32 research outputs found

    Validation of Neural Network-based Fault Diagnosis for Multi-stack Fuel Cell Systems: Stack Voltage Deviation Detection☆

    Get PDF
    Abstract This paper presents (i) an algorithm for the detection of unexpected stack voltage deviations in an Solid Oxide Fuel Cells (SOFC)-based power system with multiple stacks and (ii) its validation in a simulated online environment. The algorithm is based on recurrent neural networks (RNNs) and is validated by using operating data from the Wartsila WFC20 multi-stack SOFC system. The voltage deviation detection is based on statistical testing. Instead of a hardware implementation in the actual power plant, the algorithm is validated in a simulated online environment that provides data I/O communication based on the OPC (i.e. Object Linking and Embedding (OLE) for Process Control) protocol, which is also the technology utilized in the real hardware environment. The validation tests show that the RNN-based algorithm effectively detects unwanted stack voltage deviations and also that it is online-viable

    Increasing Downlink Cellular Throughput with Limited Network MIMO Coordination

    Get PDF
    Single-user, multiuser, and network MIMO performance is evaluated for downlink cellular networks with 12 antennas per site, sectorization, universal frequency reuse, scheduled packet-data, and a dense population of stationary users. Compared to a single-user MIMO baseline system with 3 sectors per site, network MIMO coordination is found to increase throughput by a factor of 1.8 with intra-site coordination among antennas belonging to the same cell site. Intra-site coordination performs almost as well as a highly sectorized system with 12 sectors per site. Increasing the coordination cluster size from 1 to 7 sites increases the throughput gain factor to 2.5

    Increasing Downlink Cellular Throughput with Limited Network MIMO Coordination

    Get PDF
    Single-user, multiuser, and network MIMO performance is evaluated for downlink cellular networks with 12 antennas per site, sectorization, universal frequency reuse, scheduled packet-data, and a dense population of stationary users. Compared to a single-user MIMO baseline system with 3 sectors per site, network MIMO coordination is found to increase throughput by a factor of 1.8 with intra-site coordination among antennas belonging to the same cell site. Intra-site coordination performs almost as well as a highly sectorized system with 12 sectors per site. Increasing the coordination cluster size from 1 to 7 sites increases the throughput gain factor to 2.5

    Guest Editorial MIMO Systems and Applications: Field Experience, Practical Aspects, Limitations and Challenges

    Get PDF
    The 17 papers in this special issue focus on MIMO systems and applications: field experience, practical aspects, limitations and challenges. The papers are summarized here

    Increasing downlink cellular throughput with limited network MIMO coordination

    No full text
    corecore